INDIVIDUAL BASED MODELLING OF THE COVID-19 PANDEMIC

MURAD BANAJIy 2ND MAY 2020

Abstract. This draft document presents some insights from individual based stochastic simulations of the COVID-19
pandemic. Results from the modelling are used to make claims about several data sets including from India, the UK, and
Sweden, whose pandemics are at different stages and taking different courses. It is work in progress, and supercedes earlier
documents on results of modelling the pandemic. Associated code is at https://github.com/muradbanaji/COVIDSIM
with change logs tracking how the code itself has evolved. The latest version of this document is available at http:
//maths.mdx.ac.uk/research/modelling-the-covid-19-pandemic/.

1. Introduction and aims. The basic desire which motivates this work is to gain some insight into
the underlying dynamics of the COVID-19 pandemic as it unfolds in different contexts. The reality is
that in any given country we only ever have access to incomplete data about infections and fatalities, and
the goal is to see if we can come to any robust conclusions by combining modelling and this incomplete
data. One assumption is that fatality data, while often incomplete, is more consistent than data on the
levels of infection; the latter are, after perhaps the very early days of an outbreak, likely to consistently
underestimate the true levels of infection, possibly by orders of magnitude. This said, fatality data too
must be approached with caution: fatality figures are known to be underestimates in many contexts.
Bearing this in mind, even when we use the data as it is, it is always a good idea to explore the effects
of underreporting of fatalities on model predictions.

Some basic prior knowledge of the behaviour of the pandemic is used in building the model. Knowledge
about COVID-19 seems to be evolving rapidly and all modelling-based claims must be treated with
caution. The construction aims to be sufficiently flexible so that as more information comes to light,
the model can be updated accordingly, whether this be by altering the values of parameters, putting
distributions on parameters which are currently fixed, or introducing new phenomena and events into the
model.

Built into the modelling are attempts to model the effects of various interventions, including quarantining,
physical distancing and hygiene measures, and restrictions on freedom of movement (“lockdown”). All
such measures will be referred to collectively as mitigation. Any model which ignores mitigation can at
best be useful in the very early stages of an outbreak. It is hard to estimate the mitigation parameters
and often our knowledge of these is limited to the dates on which they begin, and some intuition about
how severe they were. However, we’ll see that playing a little with mitigation parameters allow us to
reproduce several data sets reasonably well.

2. Methodology and model assumptions. The model, termed COVIDSIN, is stochastic and agent
based. The agents are infected individuals and it is assumed that there is a pool of individuals “avail-
able” to be infected (this may or may not be infinite). Time steps are days, and each day an infected
individual can either (i) infect new individuals; (ii) do nothing; (iii) recover, or (iv) die. The decision on
whether a given individual infects others or not at a given time step is a probabilistic one, determined
by overlaying all the different effects in play at that moment, including any mitigation measures in force.
Roughly speaking, predetermined infection events are associated with individuals but can be “cancelled”
by mitigation. We list the key features of the model.

1. Time course. People who are infected either recover after a certain number of days or die after a
certain number of days. The day of infection is termed day 1, so day n means n — 1 days after the
infection event. The mean day of death or recovery are parameters to be controlled (their current
default values are 17 and 20 respectively). Individual values may deviate from the mean values, with
deviations chosen from a binomial distribution.
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2. The fatality rate, namely the probability with which an infected person dies, is a model parameter
which we vary. Several studies, many not as yet peer-reviewed, suggest fatality rates in the range of
0.3-0.7%, for example [1, 2, 3]. Lower estimates exist, but are controversial (e.g., [4]). In our model,
the fatality rate hardly affects the dynamics of the epidemic, except inasmuch as events (such as
lockdowns) can be triggered by fatalities reaching a certain level. Rather, varying the fatality rate can
be used to achieve a range of estimates on underlying levels of infection consistent with the available
data. Thus we end up with conclusions such as “If the fatality rate is k%, then there are m unreported
infections for every reported infection.”

3. Infectivity. Each individual would, in the absence of quarantining, lockdown, or other mitigation
measures, infect a certain number of new individuals. This number, termed the “infectivity” of the
individual, is drawn from some distribution. Currently we work with truncated approximations to
the Poisson and geometric distributions with expected values which are parameters to be varied. The
default choice is the geometric distribution. The expected value of infectivity can be regarded as Ry,
the basic reproduction number of the epidemic, and it will be referred to as such. It varies from
outbreak to outbreak and can be estimated from the initial dynamics of the outbreak in the absence of
mitigation. The choice of distribution has most effect in the early days of an outbreak when there are
relatively few infected individuals and consequently stochastic effects can be more dramatic. Currently
there seems to be considerable ignorance about the extent to which asymptomatic or presymptomatic
individuals spread the disease [5]. We make no assumptions about whether the infected individuals
in the model are symptomatic or not. There will, in any case, be infected individuals who are not
infective simply as a consequence of the distribution of infectivities.

REMARK 2.1 (Truncation of distributions and Rg). The truncation of the distributions slightly alters
the true Ry values from the prescribed values. In earlier versions of the model, the truncation was
done too crudely and consequently the Ry values mentioned in documents before April 24th are too
high.

4. Infective window. All infected people are infective during a certain number of days post-infection.
We'll call this the infective window. The start and end day of the infective window are model pa-
rameters which can be changed. The assumption of a fixed infective window for all individuals is to
simplify matters and is open to question and exploration. A median incubation period of 5.1
days is given in the summary [6], and a typical time course of disease lasting approximately 14 days
after the onset of symptoms is described at [7]. The window default values are days 3 to 14 (inclusive)
post-infection. This represents a rough guess about the period of infectivity based on these sources
and other such as [8]. With greater knowledge, it would be possible to put distributions on the start
point and duration of the infective window.

5. Time distribution of infection events. The times at which an individual infects others are, for
simplicity, sampled from a uniform distribution over the infective window. Again, this assumption
is open to question — it is likely that individuals are more or less infective during certain phases of
the disease [8].

6. Quarantining. Some percentage of infected people may be quarantined on some day post-infection.
The details are obviously different in different settings. The proportion quarantined and the mean day
of quarantining are parameters to be varied. Deviations from the mean day of quarantining can be
chosen, if so desired, from a binomial distribution. If an individual is quarantined, then they do not
infect any more people. Quarantining can be effective as a means of controlling the disease provided
it occurs early enough in the disease cycle and reaches a sufficient number of infected individuals.

7. Testing. Some percentage of those quarantined are also tested. This is how we obtain simulated
testing data to compare with official numbers of infections. Note that the simulated infections reported
today are not simply a proportion of today’s true infection levels — there is an assumed delay. Thus
testing data from simulations is, roughly speaking, a scaled snapshot of the situation some time in the
past. The assumption of a fixed percentage of infections being picked up by testing over the whole
time-course of an epidemic is unlikely to be accurate — testing strategies and protocols can change
over time. Some simulations when matched with actual data suggest precisely this.
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8. Physical distancing is used as a catch-all term for all measures which decrease contact. If there is
physical distancing, then with some probability infection events which would have taken place do not
take place. This probability is a parameter to be varied. If we say “30% effective physical distancing,
then this means that with probability 3/10 each infection event which would have taken place is
stopped by this measure. Physical distancing measures can be triggered by crossing a certain number
of fatalities or a certain number of confirmed infections.

9. Infectible population and herd immunity. The total “infectible” population is a notional quantity
representing the number of individuals available to be infected. We choose not to use the word
“susceptible” in order not to give the impression that it truly represents all those who are susceptible
to infection. Even without mitigation measures, the infectible population need not be the whole
population: a situation with little movement of indviduals could be modelled via a smaller infectible
population. As the model is not a spatial model, varying the infectible population can be used as a
crude mechanism to model diffusion effects and localisation of the disease. The infectible population
affects the probability with which an infection event takes place. For example if the total number of
infected individuals are 75% of the total infectible population, then there is a 75% probability that a
predetermined infection event fails to take place. This allows modelling of herd immunity without
explicitly introducing non-infected individuals into the model.

10. Lockdown. Lockdown is likely to result in some level of physical distancing; but in addition lock-
down means restrictions on freedom of movement. This is modelled by reducing the total infectible
population. The extent to which this population is reduced would, in general, depend on the stage at
which lockdown occurs and the strictness of the lockdown. It is possible to model imperfect lockdown
as “leakage” into the infectible population at some prescribed rate and beginning at some prescribed
moment after lockdown. Lockdown can be triggered by crossing a certain number of fatalities or a
certain number of confirmed infections.

11. Initiating an outbreak. An outbreak may be initiated by introducing a certain number of infected
individuals — this number is a parameter which can be controlled. These in turn may “spawn” further
infected individuals as described above. The dynamics of any infected individual, namely the moments
at which they will spawn further infected individuals are predetermined the moment the individual is
“created” by sampling from distributions as described above. Of course, if they are quarantined or
there is physical distancing or lockdown, then some or all of these infection events do not take place.
We see in Figure 1 that, because of the stochastic nature of the model, introducing a small number of
infected individuals means that initial dynamics of the model can vary significantly from simulation to
simulation. It is more or less likely, given certain model parameters, that an introduction of infected
individuals fails to cause an outbreak.

3. Basic behaviour of the model. The stochastic nature of the model leads to variations in the
initial dynamics. The greater the variance in infectivities, the greater the variation in initial dynamics in
different simulations. In particular, the choice of geometric distribution for infectivities leads to greater
initial variation in model trajectories than the choice of Poisson distribution as illustrated in Figure 1.
Moreover, if we introduce a small number of infected individuals there is a greater probability that there
will be no outbreak if infectivities follow the geometric distribution rather than the Poisson distribution
with its lower variance. Provided there is an outbreak then, in the absence of herd immunity and with high
probability, the slope of a trajectory in logarithmic space eventually becomes approximately constant,
namely we have exponential growth in the number of infections with some fixed doubling time.

Physical distancing. If we introduce physical distancing into a model, then this reduces the rate of
infection, and the effective value of Ry (more properly speaking, of R;). This results in slowing the spread
of infection, and can even end the outbreak if this value is reduced to less than 1 (Figure 2).

Herd immunity can also lead to the end of an outbreak, more of less quickly depending on the size of
the infectible population. Note that we do not explicitly model the infectible individuals, but if we allow
herd immunity then whenever a scheduled infection event is due to occur, with some probability it fails
to occur as the event actually involves a non-susceptible individual.
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FiG. 1. The outcomes of 10 runs of the model are shown, first with a Poisson distribution of infectivities (top) and
then with a geometric distribution of infectivities (bottom). The time course of total infections is shown. In each case
Ro = 2.5, and simulation is initiated with 2 infected individuals. There are no mitigation measures, and other model
parameters are set at their default values discussed above.
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FiGc. 2. The outcomes of one run of the model where physical distancing is introduced at the first death. Total
infections and active infections are shown. Rg is set at 2.5 and the simulations are initiated with 10 infected individuals
with a Poisson distribution of infectivities. Left: 50% effective physical distancing introduced at the moment of the first
fatality leads to a drop in apparent Ry observed as a drop in the slope of total infections. But the effective Ry remains
above 1 and the active infections still increase. Right: 80% effective physical distancing at the first fatality leads to a drop
in apparent Ro to less than 1 and active infections decrease. Note, nevertheless, the slow time-course of decrease.

Quarantining is another mitigation strategy that can slow or even reverse an outbreak. In Figure 4 we
see the effect of a highly effective quarantining regime where 1 in 2 infected individuals are quarantined
before becoming infective. As we would expect this reduces the effective Ry to half of its value. As
Rp = 2.5 initially in the simulations shown in Figure 4, quarantining reduces it effectively to 1.25;
however, stochastic effects mean that even with Ry > 1, the outbreak may be avoided altogether. In
simulations we see the reversal of the outbreak much more frequently when infectivity is chosen from a
geometric distribution, rather than a Poisson distribution.

So far, we have considered the behaviour of infections in the model without considering fatalities. The
time course of fatalities in the model lags that of infections, with the extent of the delay dependent on the
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F1G. 3. The outcomes of running of the model with herd immunity. Ro is set at 2.5 and the simulations are initiated
with 10 infected individuals with a Poisson distribution of infectivities. Total infections and active infections are shown.
Left: a smaller infectible population of 2000 individuals. Right: a larger infectible population of 5000 individuals. In both
cases the outbreak dies away, but this happens faster and with a lower peak for a smaller population. In both simulations,
a little over 85% of the population have been infected at the end of the outbreak.
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Fic. 4. The outcomes of running the model ten times with each individual having a 50% probability of being quarantined
on day 3 of the infection. Quarantining starts occurring from the very beginning of the outbreak. Ro is initially set at 2.5,
and simulations are initiated with 10 infected individuals. Only active infections are shown. Left: a Poisson distribution
of infectivities leads to considerable slowing of the outbreak. Right: a geometric distribution of infectivities leads to slowing
of the oubreak and in some cases reversal of the outbreak.

number of days to death, the value of Ry, and the fatality rate. This is discussed further in Section 4.5.
We see in Figure 5 that the trajectory of fatalities is similar to that for infections, but shifted down
(according to the fatality rate) and to the right (by the typical delay to death). As we would expect,
increasing either Ry or the fatality rate decreases the delay between initial infections and the first deaths
(see Section 4.5).

4. Applications of the model. The model has so far been applied to data from India as a whole,
from the UK, from Sweden, and from two Indian states, namely Maharashtra and Gujarat. Note that
the different places may be at different stages in this first wave of the pandemic.! In each case, the initial
goal has been to see if it is possible to reproduce the dynamics of both infection and fatality data, bearing
in mind the difficulties in interpreting these data sets discussed briefly earlier.

4.1. Modelling the Indian data. We are able to approximately match the time-course of the
Indian outbreak using a variety of parameter choices. Infection and fatality data is drawn from the
excellent site https://www.covid19india.org/. The sequence of advisories and mitigation measures which
may have affected the disease transmission cannot easily be reduced to a couple of events. However
we focus on the following. Around March 12th, when there was the first COVID-19 fatality in India,

1To refer to “waves” may turn out to be quite problematic. It is quite possible that the slow dynamics means that it is
hard to pinpoint a moment when a “wave” ends. In simulations, even with parameters such that the epidemic dies out, we
often see a trickle of deaths several months after the peak of infection.
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Fic. 5. The model is run with Rg = 2.5 and the fatality rate set to 0.5%. Left: a plot of total infections and fatalities
in the simulation illustrating the effect of 80% physical distancing introduced at the first death as shown in Figure 2 above.
Right: a plot of total infections and fatalities in the second simulation illustrating herd immunity in Figure 3 above. We see
that there is typically a considerable delay between the first infections and the first deaths. This reflects both the time course
of the disease in an individual, and the length of time taken for a sufficient number of infections to lead to a significant
probability of seeing fatalities. In both cases, we see that, with stochastic fluctuations, the fatalities roughly follow the
pattern of the infections.

we assume that people started to be cautious, and some degree of physical distancing came into play.
India went into national lockdown on March 25th when there were 12 fatalities, and we assume that this
reduced the total infectible population (in addition to maintaing the physical distancing). Some state
level lockdowns had started a few days earlier.

The outcome of one set of simulations is shown in Figure 6. Ry is set at 4.0 to match the initial dynamics
prior to mitigation. With a fatality rate of 0.5%, and the assumed mitigations above, the model predicts
that testing is picking up about 5.5% of infections. Further details are in the Figure legend. The time-
course of mitigation measures was set to match roughly the moments at which they occurred.
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F1G. 6. Simulations of the Indian outbreak. Day 0 is March 4th 2020. Ten simulations were carried out with Rog = 4.0
and the fatality rate set to 0.5%. Simulations are initiated with 10 infected individuals and infectivities follow a geometric
distribution. Initially, the infectible population is set to 12,000,000, about 1% of the population of the country (this is
essentially equivalent to setting the population to infinity in the early stages). From the start, 5.5% of all infected individuals
are tested and quarantined, and this always occurs on day 10 of the infection cycle. At the first death, physical distancing
starts, and this is 30% effective. At the 10th death, lockdown starts, physical distancing remains 30% effective, and the
infectible population is now set to 720,000. There is however a leak of 7000 individuals into this infectible population every
day. The black curve is measured infection data. The blue curves are the model simulations of infection data. The red
curve is measured fatality data. The green curves are model simulations of fatality data.
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With the parameters used in Figure 6, the model predicts that by mid-May there will have been about
3,700 fatalities and 900,000 infections, of which about 250,000 will be active, and 47,000 will have been
reported. All such estimates must, however, be treated with extreme caution. If there is underreporting
of fatalities, then numbers would need to be scaled up accordingly. Similarly, corrections to the infection
numbers would need to be made if the fatality rate is found to differ from the “guesstimate” of 0.5%.
Projections are made based on maintaining a strict lockdown over a considerable period, which is non-
trivial — it is plausible that measures will be relaxed and/or the “leak” will increase with time, especially
given the economic devastation that lockdown is causing.

It is worth commenting on a discrepancy which develops between modelled and measured fatalities in
Figure 6, and which translates, by mid-may, into a couple of thousand “missing” deaths. If we trust
the fatalities, and modify parameters to fit these fatalities better, then we find that it is hard to fit the
measured infection data (see Figure 7). The discrepancy can be explained in various ways.

1. An increase in testing is capturing a higher percentage of total infections as time goes on (Figure 7
is then the “correct” view of things).

2. The epidemic is increasingly spreading in a younger or healthier demographic, and consequently
the fatality rate is genuinely falling. The model, with its fixed fatality rate cannot capture this
divergence between infection data and fatality data.

3. Fatalities are occurring but are not being recorded (Figure 6 is then the “correct” one). Several
media reports such as [9, 10, 11] have suggested that there may be unrecorded COVID-19 deaths
— the question is the extent of these. Given the fact that the disease is increasingly spreading
in more deprived areas with less access to healthcare, this explanation needs to be considered
seriously.
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Fic. 7. Simulations of the Indian outbreak. Ten simulations were carried out with Rg = 3.8 and the infectible popu-
lation post-lockdown set to 276,000, corresponding to infection being much more strongly confined than in the simulations
shown in Figure 6. Also physical distancing becomes 35% effective post-lockdown. All other parameters are as in Figure 6.
This time we are better able to match the fatalities data, but at the cost of increasing divergence between the measured
infections and the model simulations of these measurements.

With the parameters used in Figure 7, the model predicts that by mid-May there will have been about
1,600 fatalities and 375,000 infections, of which about 90, 000 will be active.

Overall, the results of simulating the Indian data suggest that although the spread of COVID is much
wider than the testing data suggests, it is still a relatively small outbreak by the standards of several
European outbreaks, unless either deaths are being considerably under-reported, or the true fatality rate
is much lower than estimated. Containment measures appear to have diminished the spread considerably,
although at a huge social and economic cost.



4.2. Modelling the UK data. As with the Indian data, we are able to approximately match
the time-course of the UK outbreak using a variety of parameter choices. Infection and fatality data is
drawn from the Wikipedia site https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_the_United_
Kingdom. We remark at the outset that official UK COVID-19 fatalities upto April 28th are hospital
deaths and considerably underestimate the true COVID death toll — more on this below. One set of
simulations is shown in Figure 8. With a fatality rate of 0.8%, the model predicts that testing is picking
up about 4.5% of infections. It also predicts that active cases have started to decline, albeit slowly.

To get some feeling for how to model mitigation measures in the case of the UK, the time-course of advice
of different restictions was briefly examined. WHO declared COVID-19 a pandemic on March 11th when
the UK had 456 reported COVID-19 cases and 8 reported fatalities. The government started issuing
self-isolation and physical distancing advice over the coming week. I modelled this as the introduction of
a moderate level of physical distancing (45%) into the model around the first death (this occurred a few
days earlier). Then something like a “lockdown” started to come into place around March 20th (when
there were 177 reported fatalities). T modelled this via two effects which set in after the 200th fatality.

(i) Lockdown was assumed to bring in an increased level of physical distancing, namely 60%.

(ii) Post-lockdown, there was an infectible population of 3,300, 000, namely about 5% of the population
of the country with a further leak of 30000 individuals into this infectible population every day.

Confirmed infections and hospital fatalities (UK)
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Fic. 8. Simulations of the UK outbreak. Day 0 is March 4th 2020. Ten simulations were carried out with Rg = 6.5
and the fatality rate set to 0.8%. Simulations are initiated with 10 infected individuals and infectivities follow a geometric
distribution. Initially, the infectible population is set to 66,000,000 (this is effectively infinite). Death occurs on day 18
post-infection. From the start, 4.5% of all infected individuals are tested and quarantined, and this always occurs on day
11 of the infection cycle. Thus the total number of infections is about 25 times the measured number. At the first death,
physical distancing starts, and this is 45% effective. At the 200th death, lockdown starts, physical distancing becomes 65%
effective, and the infectible population is now set to 3,960,000. There is, moreover, a leak of 40000 individuals into this
infectible population every day. The black curve is measured infection data. The blue curves are the model simulations of
infection data. The red curve is measured fatality data. The green curves are model simulations of fatality data. With
these parameters, the model predicts that 5 months after day 0 (early August 2020), as the wave subsides and daily deaths
are in the tens, there will have been 37,000 fatalities and 4.7 million infections.

REMARK 4.1 (Remark about computation). With millions of infected individuals the model slows down
considerably. In order to speed up the running of the model, a scaling can be applied — all populations
are reduced to 1/n of their values, while the death rate is increased to n times its value. This scaling
was done when simulating the UK outbreak. Other than heightening certain stochastic fluctuations in
the early days, this scaling does not affect gross model predictions.

As is well known, UK recorded COVID-19 deaths are hospital deaths and considerably underestimate the
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true COVID death toll, which could easily be 50% higher (see, e.g., [12]). If the true COVID fatalities are
higher than reported fatalities by some fixed percentage, we can still simultaneously reproduce infection
and fatality data. We would need only to appropriately scale up populations, scale down testing and
quarantining levels, and adjust the triggers for mitigation measures coming into force. For example, if we
assume 50% more deaths than reported hospital deaths then, with these parameters and as this wave dies
out, the model predicts that there will have been about 55,000 deaths (i.e., both 50% higher than the
numbers in Figure 8). If the death rate is lower than the assumed 0.8%, then infections again get revised
proportionately upwards. Figure 9 shows the results of simulations with fatality data revised upwards by
50%, and a lower death rate of 0.5%. Based on such simulations I consider it very plausible that by late
May 15% of the UK population will have been infected. In the simulations, about 90% of these infections
have already occurred in early May 1st.

Confirmed infections and corrected fatalities (UK)
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Fic. 9. Simulations of the UK outbreak. Ten simulations were carried out with the fatality rate set to 0.5% and
true fatalities set to be 50% higher than the measured (hospital) data. Now 2% of all infected individuals are tested and
quarantined. The lockdown starts at the 300th death and the infectible population is set, post-lockdown, to 9,504, 000.
There is, moreover, a leak of 72,000 individuals into this infectible population every day. The black curve is measured
infection data. The blue curves are the model simulations of the measured infection data. The red curve is corrected fatality
data. The green curves are model predictions of the corrected fatality data. Other parameters are as in Figure 8. With
these changes, the model predicts about 10.5 million infections as the current wave dies out.

4.3. Modelling the Swedish data. Sweden was chosen as an interesting case, because it has no
“lockdown” as such, although there have been restrictions on freedom of assembly, and voluntary social
distancing [13]. At face value, these measures appear to have had a significant impact on the progress of
the disease. The recorded infections data has the interesting feature that there appears to be a very clear
signature of mitigation setting in around March 14th, with a significant change of slope occurring at this
point; but this feature does not appear in the fatality data which is much “smoother”. Simulations for
one set of parameter choices are given in Figure 10. Computation was speeded up with a scaling (see
Remark 4.1 in Section 4.2 above). In this simulation, active cases peak around day 55 (late April 2020),
at which point there are in the region of 300,000 active cases (these numbers depend, of course on the
death rate).

To illustrate that parameter choices are by no means unique we present results of another simulation in
Figure 11. With these parameters, active infections peak around day 40 (11th April), at which point
there are in the region of 260,000 active cases.

In both simulations, as the wave dies out there will have been in the region of 800,000 to 950,000
infections (about 8 — 10% of the total population). If the death rate is higher (resp., lower) than 0.8%,

9
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Fic. 10. Simulations of the Swedish outbreak. Day 0 is March 2nd 2020. Ten simulations were carried out with
Ro = 8.5 and the fatality rate set to 0.8%. Simulations are initiated with 10 infected individuals and infectivities follow
a geometric distribution. The average day of death is day 18. Initially, the infectible population is set to 10,000,000
(effectively infinite). From the start, 3.8% of all infected individuals are tested and quarantined, and this occurs on day
4. At the 550th positive case (about 11th March), mitigation begins, physical distancing becomes 74% effective, and the
infectible population is now set to 400,000. There is, moreover, a leak of 10000 individuals into this infectible population
every day. Remaining parameters are at their default values. The black curve is measured infection data. The blue
curves are the model simulations of infection data. The red curve is measured fatality data. The green curves are model
simulations of fatality data.

then this number needs to be scaled down (resp., up).

4.4. Modelling an Indian state: Maharashtra. Maharashtra accounts for about 30% of all
recorded positive cases in India, and about 40% of all deaths nationwide (9282 out of 31,324, and 400
out of 1008, respectively, on 28th April 2020). This means that there is sufficient data — in particular
fatality data — to attempt modelling of the dynamics within Maharashtra on its own. In Figure 12 we
see an attempt which matches the time course of recorded infections reasonably well. Active infections
peak around day 55 (May 8th) at which point there are about 600,000 active infections. Computation
was speeded up with a scaling (see Remark 4.1 in Section 4.2 above).

Figure 12 shows the same divergence between predicted and obtained fatality data that was remarked
on for India as a whole, and the possibilities for why this occurs outlined in Section 4.1 for India as a
whole hold in this case too. In Figure 13 we see a second set of simulations which match the time course
of recorded fatalities better. In this case, as expected, the model somewhat underestimates the extent
of recorded infections. Active infections peak around day 70 (May 23th) at which point there are about
350, 000 active infections. Note that assuming stronger mitigation both lowers the peak number of active
infections, and delays it. The more optimistic scenario in Figure 13 corresponds to a later peak.

Note that the first, more pessimistic, simulation makes sense if there are COVID-19 deaths going
unrecorded, while the second, more optimistic, simulation makes sense if testing is capturing an in-
creasing proportion of actual infections after about day 20, namely April 3rd. According to data on
https://www.covid19india.org/, between April 5th and April 28th, total tests increased 7.5 times (16,008
to 120, 620), recorded fatalities increased about 9 times (45 to 399), and recorded infections increased
about 12.5 times (747 to 9282). Although at face value testing is not keeping pace with other measures of
spread, this could be a consequence of time-delays — the model simulations resulting in Figures 12 and 13
suggest that total infections increased about 3.5 to 5 times during this period, and it is plausible that the
increased pace of testing means that a higher proportion of infections are being picked up. On the other
hand, media reports cited above [9, 10, 11] focussed on Maharashtra (Mumbai in particular) suggest that
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Fic. 11. Simulations of the Swedish outbreak with some altered parameters. The mean time to death is now set at
19 days. Death occurs on average on Day 20. From the start, 4% of all infected individuals are tested and quarantined,
and this occurs on day 7 of the infection cycle. At the 600th positive case (about 11th March), mitigation begins, physical
distancing becomes 70% effective, and the infectible population is now set to 230,000, namely disease is much more confined
than in the simulations of Figure 10. Remaining parameters are as in Figure 10. The blue curves are the model simulations
of infection data. The red curve is measured fatality data. The green curves are model simulations of fatality data.

there are unrecorded COVID-19 fatalities occurring. It is possible that the divergence between recorded
infections and recorded fatalities is a consequence of some combination of the two effects: there is some
effect from increased testing and some from “missing” deaths, in which case, the “true” behaviour may
be intermediate between that shown in Figures 12 and 13.

4.5. Estimating the beginning of an outbreak: Gujarat. Can we use stochastic individual-
based modelling of the kind described here to tell us when infection began to spread? This would be
relevant to a situation where the origins of an outbreak are not clear. This is the case for Gujarat where
the origins of early cases were unclear — already on April 2nd 2020 four positive cases were found in
Ahmedabad through “public surveillance” (i.e., without known contact history) [14].

The answer to this question is, roughly, yes, if we trust the model. We choose parameters which fit the
data set of interest, initiate outbreaks in the model, and let it run. We then check when we arrive at
some marker event in the model simulations, e.g., the first death, or the 10th reported case, or whatever,
and compare this with when it occurred in real life. Because the model is stochastic we should do this
multiple times, to get an estimate for when the outbreak was initiated.

There are issues with this method. For example,

1. They assume a single introduction of the disease, when in reality there may be multiple intro-
ductions at the start of an outbreak.

2. They depend on assumptions about typical transmission time in the model. (The default window
of transmission in the model day 3 to day 14 of infection. The upper limit of day 14 can be argued
to be too low.)

3. They depend on the Ry value used, generally chosen to fit the early dynamics in the data.
However, stochastic effects are greater both in data and simulation in the early period, making
this fitting process less reliable.

Consider a key event, the first COVID-19 death in an outbreak. We expect to reach this event quicker if
we have a more rapid time-course of the disease, either at the level of the individual because an individual
progresses from infection to death quicker, or at the level of the population because, for example, early
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Fic. 12. Simulations of the Maharashtra outbreak. Day 0 is March 14th 2020. Ten simulations were carried out
with Rg = 4.0 and the fatality rate set to 0.5%. Simulations are initiated with 10 infected individuals and infectivities
follow a geometric distribution. Initially, the infectible population is set to 10,000,000. From the start, 3.7% of all infected
individuals are tested and quarantined, and this occurs, on average, on day 12 of the infection cycle. At the 70th positive
case (about 23rd March), mitigation begins, physical distancing becomes 42% effective, and the infectible population is now
set to 900,000. There is, moreover, a leak of 10000 individuals into this infectible population every day. The black curve is
measured infection data. The blue curves are the model simulations of infection data. The red curve is measured fatality
data. The green curves are model simulations of fatality data.
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Fia. 13. Simulations of the Maharashtra outbreak which match the fatality data quite well. Death now occurs on day
18 on average, and 3.9% of all infected individuals are tested and quarantined. Physical distancing is 55% effective after
mitigation starts, and the infectible population is set to 700,000. All other details and parameters are as in Figure 12.

infectivity or a high Rg-value means that infection spreads quicker.

To test this hypothesis, we first ran the model 100 times with Ry = 2.5, a fatality rate of 0.5%, and all
other parameters at their defaults. A single infection was used to seed the outbreak. For those simulations
where an outbreak occurred (59 out of 100 simulations), the mean (£ SD) day of the first death was day
56.1(£15.3). Note how surprisingly long it takes for the first death to occur on average — almost two
months! Increasing Ry to 5 resulted in an outbreak in 81 out of 100 cases with mean day of first death
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42.5(£10.9). Maintaining Ry at 2.5 but increasing the fatality rate to 2% resulted in an outbreak in 61
out of 100 cases with mean day of first death 45.2(£12.9). Initiating an outbreak with a two infections
instead of one, increased the likelihood of the outbreak occurring but did not greatly decrease the average
time to the first death: with Ry = 2.5, a fatality rate of 0.5%, and two initial infections, there were 86
outbreaks with a mean day of first death being 51.1(4+13.3) days.

This illustrates how either a more rapid early dynamics or an increased death rate decreases the time to
the first death. A greater number of initial infections seems to have a more modest effect on the time to
the first death.

Running the model with parameters aimed at reproducing the Gujarat data gave the plots shown in
Figure 14. An Rj value of 8 was needed to approximately match the initial rapid increase in cases,
although it may be that this was a function of when the decision was made to start testing, rather than
reflecting a genuine rapid increase in cases. It was assumed that mitigation started at the first reported
infection (this was on March 19th, a few days before national lockdown). Outbreaks were initiated with
2 infected individuals, and testing was assumed to occur, on average, 10 days after infection. Some
parameters were altered from their defaults as described in the legend to Figure 14. In 3 out of 100
model runs, the outbreak died out. In the remaining simulations death occurred on day 31.2(£8.7). Note
that the average time between between first infection and first death is about a month despite the large
initial Rg. A sample of simulations are plotted in Figure 14.

Confirmed infections and fatalities (Gujarat)
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Fic. 14. Simulations of the Gujarat outbreak. Day 0 is March 12th 2020. Ten simulations were carried out with
Ro = 8.0 and the fatality rate set to 0.5%. Simulations are initiated with 2 infected individuals and infectivities follow a
geometric distribution. Initially, the infectible population is set to 10,000,000 (this is effectively infinite given the small
number of cases). The average day of death is day 14, and the infective window is from day 3 to day 13. From the start,
3.2% of all infected individuals are tested and quarantined, and this occurs, on average, on day 10 of the infection cycle.
At the first tested positive case, mitigation begins (this occurred on March 19th). At this point physical distancing becomes
70% effective, and the infectible population is now set to 900,000. There is, moreover, a leak of 10,000 individuals into
this infectible population every day. Remaining parameters are at default values. The black curve is measured infection
data. The blue curves are the model simulations of infection data. The red curve is measured fatality data. The green
curves are model simulations of fatality data.

The first recorded COVID-19 death in Gujarat occurred on March 22nd and involved a patient with no
travel history abroad — although they had travel history within India [15]. While it is unclear where
the disease was contracted, it is possible that the disease was contracted in Gujarat itself. Based on
this possibility, the model predicts (with all the notes of caution listed above) that the first infections
occurred about a month earlier, namely around Feb. 21st (one standard deviation on each side gives Feb.
12th to March 1st). The Namaste Trump event [16] took place during this period on Feb. 24th, shortly
after Donald Trump arrived in India with his entourage, and involved about 100,000 people. Thus it is
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plausible that it played a part in the spread of the outbreak in Gujarat.

It is also possible, though less likely, that Namaste Trump played a part in the initiation of the outbreak.
Genomic studies showed that COVID-19 was likely quite widespread in the USA by mid-late February
[17]. Although there had been only a dozen diagnosed cases and a couple of deaths by this point, it is
noteworthy that the first two fatalities in the USA had no known travel history. Knowing what we know
about the time-course of the disease, it is likely that the diagnosed cases were only the tip of the tip of
the iceberg. Simulations show that by the time of the first “community” fatalities, there can be tens of
thousands of cases, and although we haven’t simulated the data from the US, the data suggests that the
initial growth rate was rapid.

Thus while we cannot be certain without adequate contact tracing whether Namaste Trump played a
part in the spread, or even initiation, of COVID-19 in Gujarat, based on model simulations it cannot be
argued that the event occurred too early to contribute to the dynamics of COVID-19 in Gujarat. It is
plausible that it was a major event in the initiation/early spread of the disease.

5. Conclusions. Individual-based modelling is able to reproduce qualitatively, and to some extent
quantitatively, both infection and fatality data observed in several different contexts. Some of the more
interesting insights come from questioning discrepancies between modelled and observed behaviour. Al-
though such discrepancies may be artifacts arising from the stochastic nature of the model and the noisy
data, they sometimes appear robust enough to warrant extra thought.

Another interesting set of insights arises from considering the effects of mitigation measures which can
often be observed in infection and/or fatality data. Although any mitigation measure can, if sufficiently
strong, reverse an outbreak, different measures have different mechanisms and leave different signatures
in the data. Measures which restrict freedom of movement reduce the population available for infection,
effectively localise a disease and, in the short term, introduce high levels of spatial heterogeneity into
infection levels. More global measures which lead to social distancing can slow the spread by reducing
the probability of infection events occurring and thus effectively reducing Ry; but if Ry is high to begin
with, such measures need to be very effective to bring it to below 1 and reverse an outbreak.

We see very clearly in the modelling how the slow time course of the disease complicates management and
mitigation. Even when mitigation has proved successful in the sense that active infections have peaked,
there is often a long delay before the pool of infection dwindles to manageable levels. To be effective,
measures need to be maintained for a considerable period, making it imperative to consider carefully how
to reduce their social and economic costs alongside considering their benefits in disease control.
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