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Abstract. Let G be a cyclic group of order p and let V,W be kG-modules.

We study the modules of covariants k[V,W ]G = (S(V ∗) ⊗W )G. For V inde-
composable with dimension 2, and W an arbitrary indecomposable module, we

show k[V,W ]G is a free k[V ]G-module (recovering a result of Broer and Chuai

[1]) and we give an explicit set of covariants generating k[V,W ]G freely over
k[V ]G. For V indecomposable with dimension 3, and W an arbitrary indecom-

posable module, we show that k[V,W ]G is a Cohen-Macaulay k[V ]G-module

(again recovering a result of Broer and Chuai) and we give an explicit set of
covariants which generate k[V,W ]G freely over a homogeneous system of pa-

rameters for k[V ]G. We also use our results to compute a minimal generating

set for the transfer ideal of k[V ]G over a homogeneous sytem of parameters
when V has dimension 3.

1. Introduction

Let G be a group, k a field, and V and W finite-dimensional kG-modules on
which G acts linearly. Then G acts on the set of functions V → W according to
the formula

g · φ(v) = gφ(g−1v)

for all g ∈ G and v ∈ V .
Classically, a covariant is aG-equivariant polynomial map V →W . An invariant

is the name given to a covariant V → k where k denotes the trivial indecomposable
kG-module. If the field k is infinite, then the set of polynomial maps V → W can
be identified with S(V ∗)⊗W , where the action on the tensor product is diagonal
and the action on S(V ∗) is the natural extension of the action on V ∗ by algebra
automorphisms. Then the natural pairing S(V ∗) × S(V ∗) → S(V ∗) is compati-
ble with the action of G, and makes the invariants S(V ∗)G a k-algebra, and the
covariants (S(V ∗)⊗W )G a S(V ∗)G-module.

If G is finite and the characteristic of k does not divide |G|, then Schur’s lemma
implies that every covariant restricts to an isomorphism of some direct summand
of S(V ∗) onto W . Thus, covariants can be viewed as “copies” of W inside S(V ∗).
Otherwise, the situation is more complicated.

The algebra of polynomial maps V → k is usually written as k[V ]. In this article
we will write k[V ]G for the algebra of G-invariants, and k[V,W ]G for the module
of covariants. We are interested in the structure of k[V,W ]G as a k[V ]G-module.
Throughout, G denotes a finite group.

This question has been considered by a number of authors over the years. For
example, Chevalley and Sheppard-Todd [2], [12] showed that if the characteristic
of k does not divide |G| and G acts as a reflection group on V , then k[V ]G is
a polynomial algebra and k[V,W ]G is free. More generally, Eagon and Hochster
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[8] showed that if the characteristic of k does not divide |G| then k[V,W ]G is a
Cohen-Macaulay module (and k[V ]G a Cohen-Macaulay ring in particular). In the
modular case, Hartmann [6] and Hartmann-Shepler [7] gave necessary and sufficient
conditions for a set of covariants to generate k[V,W ]G as a free k[V ]G-module,
provided that k[V ]G is polynomial and W ∼= V ∗. Broer and Chuai [1] remove the
restrictions on both W and k[V ]G.

The present article is inspired by two particular results from [1], which we state
here for convenience:

Proposition 1 ([1], Proposition 6). Let G be a finite group of order divisible by
p = char(k) and let V,W be kG-modules.

(i) Suppose codim(V G) = 1. Then k[V ]G is a polynomial algebra and k[V,W ]G

is free as a graded module over k[V ]G.
(ii) Suppose codim(V G) = 2. Then k[V,W ]G is a Cohen-Macaulay graded mod-

ule over k[V ]G .

In the situation of (i) above, there is a method for checking a set of covariants
generates k[V,W ]G over k[V ]G, but no method of constructing generators. Mean-
while, in the situation of (ii), there exists a polynomial subalgebra A of k[V ]G over
which k[V,W ]G is a free module. It is not clear how to find module generators, or
to check that they generate k[V,W ]G.

The purpose of this article is to work towards making these results constructive.
We investigate certain modules of covariants for V satisfying (i) or (ii) above and
G a cyclic group of order p.

2. Preliminaries

From this point onwards we let G be a cyclic group of order p and k a field
of characteristic p. Let V and W be kG-modules. We fix a generator σ of G.
Recall that, up to isomorphism, there are exactly p indecomposable kG-modules
V1, V2, . . . , Vp, where the dimension of Vi is i and each has fixed-point space of
dimension 1. The isomorphism class of Vi is usually represented by a module of
column vectors on which σ acts as left-multiplication by a single Jordan block of
size i.

Suppose W ∼= Vn. It is convenient to choose a basis w1, w2, . . . , wn of W for
which the action of G is given by

σw1 = w1

σw2 = w2 − w1

σw3 = w2 − w2 + w1

...

σwn = wn − wn−1 + wn−2 − . . .± w1.

(thus, the action of σ−1 is given by left-multiplication by a upper-triangular
Jordan block). We do not (yet) choose a particular action on a basis for V , nor
do we assume V is indecomposable; we let v1, v2, . . . , vm be a basis of V and let
x1, . . . , xm be the dual of this basis.

Note that k[V ] = k[x1, x2, . . . , xm], and a general element of k[V,W ] is given by

φ = f1w1 + f2w2 + . . .+ fnwn

where each fi ∈ k[V ]. We define the support of φ by

Supp(φ) = {i : fi 6= 0}.



MODULAR COVARIANTS OF CYCLIC GROUPS OF ORDER p 3

The operator ∆ = σ − 1 ∈ kG will play a major role in our exposition. ∆ is a
σ-twisted derivation on k[V ]; that is, it satisfies the formula

(1) ∆(fg) = f∆(g) + ∆(f)σ(g)

for all f, g ∈ k[V ].
Further, using induction and the fact that σ and ∆ commute, one can show ∆

satisfies a Leibniz-type rule

(2) ∆k(fg) =

k∑
i=0

(
k
i

)
∆i(f)σk−i(∆k−i(g)).

A further result, which can be deduced from the above and proved by induction
is the rule for differentiating powers:

(3) ∆(fk) = ∆(f)

(
k−1∑
i=0

f iσ(f)k−1−i

)
for any k ≥ 1.

For any f ∈ k[V ] we define the weight of f :

wt(f) = min{i > 0 : ∆i(f) = 0}.
Notice that ∆wt(f)−1(f) ∈ ker(∆) = k[V ]G for all f ∈ k[V ]. Another consequence
of (2) is the following: let f, g ∈ k[V ] and set d = wt(f), e = wt(g). Suppose that

d+ e− 1 ≤ p.
Then

∆d+e−1(fg) =

d+e−1∑
i=0

(
d+ e− 1

i

)
∆i(f)σd+e−1−i(∆d+e−1−i(g)) = 0

since if i < e then d+ e− 1− i > d− 1. On the other hand

∆d+e−2(fg) =

d+e−2∑
i=0

(
d+ e− 2

i

)
∆i(f)σd+e−2−i(∆d+e−2−i(g))

=

(
d+ e− 2

i

)
∆d−1(f)σe−1(∆e−1(g)) 6= 0

since

(
d+ e− 2

i

)
6= 0 mod p. We obtain the followng:

Proposition 2. Let f, g ∈ k[V ] with wt(f) + wt(g) − 1 ≤ p. Then wt(fg) =
wt(f) + wt(g)− 1.

Also note that
∆p = σp − 1 = 0

which shows that wt(f) ≤ p for all f ∈ k[V ]G. Finally notice that

(4) ∆p−1 =

p−1∑
i=0

σi.

This is the Transfer map, a k[V ]G-homomorphism TrG : k[V ] → k[V ]G which is
well-known to invariant theorists.

Now we have a crucial observation concerning the action of σ on W : for all
i = 1, . . . , n− 1 we have

(5) ∆(wi+1) + σ(wi) = 0
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and ∆(w1) = 0.
From this we obtain a simple characterisation of covariants:

Proposition 3. Let

φ = f1w1 + f2w2 + . . .+ fnwn.

Then φ ∈ k[V,W ]G if and only if there exists f ∈ k[V ] with weight ≤ n such that
fi = ∆i−1(f) for all i = 1, . . . , n.

Proof. Assume φ ∈ k[V,W ]G. Then we have

0 =∆

(
n∑
i=1

fiwi

)

=

n∑
i=1

(fi∆(wi) + ∆(fi)σ(wi))

=

n−1∑
i=1

(∆(fi)− fi+1)σ(wi) + ∆(fn)σ(wn)

where we used (5) in the final step. Now note that

σ(wi)) = wi + (terms in wi−1, wi−2, . . . , w1)

for all i = 1, . . . , n. Thus, equating coefficients of wi, for i = n, . . . , 1 gives

∆(fn) = 0,∆(fn−1) = fn, . . . ,∆(f2) = f3,∆(f1) = f2.

Putting f = f1 gives fi = ∆i−1(f) for all i = 1, . . . , n and 0 = ∆n(f) as required.

Conversely, suppose that

φ =

n∑
i=1

∆i−1(f)wi

for some f ∈ k[V ] with ∆n(f) = 0. Then we have

∆(φ) =

n∑
i=1

∆i−1(f)∆(wi) + ∆i(f)σ(wi)

=

n∑
i=2

(−∆i−1(f)σ(wi−1) + ∆i(f)σ(wi)) + ∆(f)σ(w1) by (5)

= ∆n(f)σ(wn)

= 0

as required.
�

Note that the support of any covariant is therefore of the form {1, 2, . . . , i} for
some i ≤ n. We will write

Supp(φ) = i

if φ is a covariant and Supp(φ) = {1, 2, . . . , i}.
Introduce notation

Kn := ker(∆n)

and

In := im(∆n).

These are k[V ]G-modules lying inside k[V ].
Now we can define a map
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Θ : Kn → k[V,W ]G

(6) Θ(f) =

n∑
i=1

∆i−1(f)wi.

Clearly Θ is an injective, degree-preserving map of k[V ]G-modules, and Propo-
sition 3 implies it is also surjective. We conclude that

Proposition 4. Kn and k[V,W ]G are isomorphic as graded k[V ]G-modules.

From this point onwards we set V = Vm and W = Vn, with the basis of V chosen
so that

σx1 = x1 + x2,

σx2 = x2 + x3,

σx3 = x3 + x4.

...

σxm = xm.

Lemma 5. Let z = xe11 x
e2
2 . . . xemm . Let d =

∑m
i=1 ei(m− i), e =

∑m
i=1 ei = deg(z)

and assume d < p. Then
wt(z) = d+ 1.

Proof. Applying Proposition 2 repeatedly and noting that wt(xi) = m− i+ 1, we
find

wt(z) =

m∑
i=1

(ei(m− i+ 1)− ei + 1)− (n− 1)

=

m∑
i=1

(ei(m− i)) + 1 = d+ 1.

�

3. Hilbert series

Let k be a field and let S = ⊕i≥0Si be a positively graded k-vector space. The
dimension of each graded component of S is encoded in its Hilbert Series

H(S, t) =
∑
i≥0

dim(Si)t
i.

Proposition 4 implies that H(k[V,W ]G, t) = H(Kn, t). In this section we will
outline a method for computing H(Kn, t).

Each homogeneous component k[V ]i of k[V ] is a kG-module. As such, each one
decomposes as a direct sum of modules isomorphic to Vk for some values of k. Write
µk(k[V ]i) for the multiplicity of Vk in k[V ]i and define the series

Hk(k[V ]) =
∑
i≥0

µk(k[V ]i)t
i.

The series Hk(k[Vm]) were studied by Hughes and Kemper in [9]. They can
also be used to compute the Hilbert series of k[Vm]G; since dim(V Gk ) = 1 for all
k = 1, . . . , p we have

(7) H(k[Vm]G, t) =

p∑
k=1

Hk(k[Vm], t).
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Now observe that

dim(ker(∆n|Vk
)) =

{
n k ≥ n
k otherwise.

Therefore

H(Kn, t) =

n−1∑
k=1

kHk(k[V ], t) +

p∑
k=n

nHk(k[V ], t).

We can write this as as a series not depending on p:

(8) H(Kn, t) = nH(k[V ]G, t)− (

n−1∑
k=1

(n− k)Hk(k[V ], t)).

using equation (7).
We will need the Hilbert Series of IGn = k[V ]G ∩ In in the final section. For all

k = 1, . . . , p we have

dim(∆n(Vk))G =

{
1 k > n
0 otherwise.

Therefore

H(IGn , t) =

p∑
k=n+1

Hk(k[V ], t),

which we can write independently of p as

(9) H(IGn , t) = H(k[V ]G, t)− (

n∑
k=1

Hk(k[V ], t)).

4. Decomposition Theorems

In this section we will compute the series Hk(k[V2], t) and Hk(k[V3], t) for all
k = 1, . . . , p− 1.

Hughes and Kemper [9, Theorem 3.4] give the formula

(10) Hk(k[Vm], t) =
∑

γ∈M2p

γ − γ−1

2p
γ−k

1− γp(m−1)tp

1− tp
m−1∏
j=0

(1− γm−1−2jt)−1,

where M2p represents the set of 2pth roots of unity in C. A similar formula is
given for Hp(k[V ], t) but we will not need this. The following result can be derived
from the formula above, but follows more easily from [4, Proposition 3.4]:

Lemma 6. Hk(k[V2, t]) = tk−1

1−tp .

For V3 we will have to use Equation (10). This becomes

Hk(k[V3], t) =
1

2p(1− t)
∑

γ∈M2p

(γ − γ−1)γ−k+2

(1− γ2t)(γ2 − t)
.

Lemma 7.

Hk(k[V3], t) =

{
tp−l−tp−l−1+tl+1−tl
(1−t)(1−t2)(1−tp) if k = 2l + 1 is odd

0 if k is even.

Proof. We evaluate

(γ − γ−1)γ−k+2

(1− γ2t)(γ2 − t)
=

A

γ − t 1
2

+
B

γ + t
1
2

+
C

1− γt 1
2

+
D

1 + γt
1
2
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using partial fractions, finding

A =
t−l+1 − t−l

(2t
1
2 )(1− t2)

,

B = (−1)−k+3 t−l+1 − t−l

(−2t
1
2 )(1− t2)

,

C =
tl−1 − tl

2(t−1 − t)
,

D = (−1)−k+3 tl−1 − tl

2(t−1 − t)
.

Now we compute: ∑
γ∈M2p

1

γ − t 1
2

=
∑

γ∈M2p

−t− 1
2

1− γt− 1
2

= −t− 1
2

∞∑
i=0

∑
γ∈M2p

(γt−
1
2 )i

= −t− 1
2 2p

∞∑
i=0

(t−
1
2 )2pi

= −t− 1
2 2p

1

1− (t−
1
2 )2p

= −t 1
2 2p

1

1− t−p

= 2p
tp−

1
2

1− tp

Similarly we have ∑
γ∈M2p

1

γ + t
1
2

= −2p
tp−

1
2

1− tp

while ∑
γ∈M2p

1

1− γt 1
2

=

∞∑
i=0

∑
γ∈M2p

(γt
1
2 )i

= 2p

∞∑
i=0

(t
1
2 )2pi

= 2p

∞∑
i=0

(tpi)

= 2p
1

1− tp

and similarly ∑
γ∈M2p

1

1 + γt
1
2

= 2p
1

1− tp

as {−γ : γ ∈M2p} = M2p.
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It follows that

Hk(k[V3], t) =
1

2p(1− t)

(
(A−B)2ptp−

1
2

1− tp
+

2p(C +D)

1− tp

)

=
1

(1− t)(1− tp)

(
(1 + (−1)−k+3)(tp−l − tp−l−1)

2(1− t2)
+

(1 + (−1)−k+3)(tl−1 − tl)
2(t−1 − t)

)
=

{
tp−l−tp−l−1+tl+1−tl
(1−t)(1−t2)(1−tp) if k is odd

0 if k is even

as required. �

5. Main results: V2

We are now in a position to state our main results. First, suppose V = V2 and
W = Vn where n ≤ p. Then it’s well known that k[V ]G is a polynomial ring,
generated by x2 and

N =

p−1∏
i=0

σi(x1) = xp1 − x1x
p−1
2 .

Therefore we have

(11) H(k[V ]G, t) =
1

(1− t)(1− tp)
.

Proposition 8. We have

H(Kn, t) = H(k[V,W ]G, t) =
1 + t+ t2 + . . .+ tn−1

(1− t)(1− tp)
.

Proof. Using equations (8) and (11) and Lemma 6 we have

H(Kn, t) =
n

(1− t)(1− tp)
−
n−1∑
k=1

(n− k)tk−1

1− tp
=

1 + t+ t2 + . . .+ tn−1

(1− t)(1− tp)
.

The result now follows from Proposition 4. �

Theorem 9. The module of covariants k[V,W ]G is generated freely over k[V ]G by

{Θ(xk1) : k = 0, . . . , n− 1}.
where Θ(x01) = Θ(1) = w1.

Note that, by Proposition 1(i), k[V,W ]G is free over k[V ]G and we could use [1,
Theorem 3] to check our proposed module generators. However, we prefer a more
direct approach.

Proof. It follows from Lemma 5 that wt(xk1) = k + 1. Therefore Supp(Θ(xk1)) =
k + 1, and so it’s clear that the k[V ]G-submodule M of k[V,W ]G generated by the
proposed generating set is free. Moreover, as deg(Θ(xk1)) = k, M has Hilbert series

1 + t+ t2 + . . .+ tn−1

(1− t)(1− tp)
.

But by Proposition 8, this is the Hilbert series of k[V,W ]G. Therefore M =
k[V,W ]G as required. �

Corollary 10. Kn is a free k[V G]-module, generated by {xk1 : k = 0, . . . , n− 1}.
Proof. Follows from Theorem 9 above and the proof of Proposition 4. �

Remark 11. The above was also obtained, in the special case n = p− 1, by Erkuş
and Madran [5].
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6. Main results: V3

In this section let p be an odd prime and V = V3. We begin by describing k[V ]G.
This has been done in several places before, for example [3] and [10, Theorem 5.8],
but we include this for completeness.

We use a graded reverse lexicographic order on monomials k[V ] with x1 > x2 >
x3. If f ∈ k[V ] then the lead term of f is the term with the largest monomial in
our order and the lead monomial is the corresponding monomial. If f, g ∈ k[V ] we
will write

f > g

if the lead monomial of f is greater than the lead monomial of g.
The results of section 3 can be used to show

(12) H(k[V ]G, t) =
1 + tp

(1− t)(1− t2)(1− tp)
.

Note that using the given order, we have

f > ∆(f)

for all f ∈ k[V ].
We recall two popular means of constructing invariants. Let f ∈ k[V ]. As

mentioned in section 2, the transfer

∆p−1(f) = TrG(f) =

p−1∑
i=0

(σif)

and also the norm

N(f) =

p−1∏
i=0

(σif)

of f both lie in k[V ]G. It is easily shown that

a1 := x3,

a2 := x22 − 2x1x3 − x2x3,

a3 := N(x1) =

p−1∏
i=0

σi(x1)

are invariants, and looking at their lead terms tells us that they form a homogeneous
system of parameters for k[V ]G, with degrees 1, 2 and p.

Proposition 12. Let f ∈ k[V ]G be any invariant with lead term xp2. Let A =
k[a1, a2, a3]. Then f 6∈ A. Consequently k[V ]G is a free A-module, whose generators
are 1 and f .

Proof. It is clear that f 6∈ A, as its lead term is not in the subalgebra of k[V ]
generated by the lead terms of a1, a2 and a3. Therefore the A-submodule of k[V ]G

generated by 1 and f has Hilbert series

1 + tp

(1− t)(1− t2)(1− tp)

which is the Hilbert series of k[V ]G as required. �

The obvious choice of invariant with lead term xp2 is N(x2). However, we will

use TrG(xp−11 x2) instead. For the calculation of the lead term of this invariant see
[11, Lemma 3.1] or Lemma 16 to come.

The following observation is a consequence of the generating set above.
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Lemma 13. Let f ∈ A. Then the lead term of f is of the form xpi1 x
2j
2 x

k
3 for some

positive integers i, j, k.

Now let W = Vn for some n ≤ p. For the rest of this section, we set l = 1
2n if

n is even, with l = 1
2 (n − 1) if n is odd. Our first task is to compute the Hilbert

Series of k[V,W ]G. Once more we use equation (8) and the bijection Θ to do this.
We omit the details.

Proposition 14.

H(k[V,W ]G, t) =
1 + 2t+ 2t2 + . . .+ 2tl + 2tp−l + 2tp−l+1 + . . .+ tp

(1− t)(1− t2)(1− tp)
if n is odd, while

H(k[V,W ]G, t) =
1 + 2t+ 2t2 + . . .+ 2tl−1 + tl + tp−l + 2tp−l+1 + . . .+ 2tp−1 + tp

(1− t)(1− t2)(1− tp)
if n is even.

Next, we need some information about the lead monomials of certain polynomi-
als:

Lemma 15. Let j ≤ k < p. Then ∆j(xk1) has lead term

k!

(k − j)!
xk−j1 xj2.

Proof. The proof is by induction on j, the case j = 0 being clear. Suppose 1 ≤ j < k
and

∆j(xk1) =
k!

(k − j)!
xk−j1 xj2 + g

where g ∈ k[V ] has lead monomial ≤ xk−j−11 xj+1
2 . Then

∆j+1(xk1) =
k!

(k − j)!
∆(xk−j1 xj2) + ∆(g)

=
k!

(k − j)!
∆(xk−j1 )σ(xj2) + xk−j1 ∆(xj2) + ∆(g).

Note that the lead monomial of ∆(g) is < xk−j−11 xj+1
2 . Now applying (3) shows

that ∆(xj2) is divisible by x3 and

∆(xk−j1 ) = x2(xk−j−11 + xk−j−21 σ(x1) + . . .+ σ(x1)k−j−1)

= (k − j)xk−j−11 x2 + smaller terms.

In addition,

σ(xj2) = (x2 + x3)j = xj2 + smaller terms.

Therefore the lead term of ∆j+1(xk1) is

(k − j) k!

(k − j)!
xk−j−11 xj+1

2 =
k!

(k − j − 1)!
xk−j−11 xj+1

2

as required.
�

Similarly we have

Lemma 16. Let j ≤ k < p. Then ∆j(xk1x2) has lead term

k!

(k − j)!
xk−j1 xj+1

2 .
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Proof. We have by (2)

∆j(xk1x2) =

j∑
i=0

(
j
i

)
∆j−i(xk1)σi(∆i(x2)).

Only the first two terms are nonzero, hence

∆j(xk1x2) = ∆j(xk1)x2 + j∆j−1(xk1)x3.

=
k!

(k − j)!
xk−j1 xj+1

2 + smaller terms

where we used Lemma 15 is the last step. �

We are now ready to state our main results. Let V = V3 and W = Vn. For any
i = 0, 1, . . . , n− 1 we define monomials

Mi =

{
x
i/2
1 if i is even,

x
(i−1)/2
1 x2 if i is odd.

and polynomials

Pi =

{
∆(x

p−i/2
1 ) if i is even, i > 0,

x
p−(i+1)/2
1 if i is odd.

with P0 = xp−11 x2.

Theorem 17. Let n ≤ p. Then Kn is a free A-module, generated by

Sn = {M0,M1, . . . ,Mn−1,∆
p−n(P0),∆p−n(P1), . . . ,∆p−n(Pn−1)}.

Proof. By Lemma 2, the weight of Mi is i+ 1 for i < p, while the weight of Pi is{
p i odd or zero
p− 1 i even, i > 0.

Therefore the given polynomials all lie in Kn. Further, the degree of Mi is d i2e and

the degree of Pi is p − d i2e which shows that the A-module generated by Sn has
Hilbert series bounded above by the Hilbert series of Kn given in Proposition 14,
with equality if and only if it is free. Therefore it is enough to prove that Sn is
linearly independent over A.

Applying Lemmas 15 and 16, the lead monomials of Sn are

{1, x2, x1, x1x2, . . . , xl−11 x2, x
l
1,

xn−l−11 xp−n+1
2 , xn−l1 xp−n2 , . . . , xn−21 xp−n+1

2 , xn−11 xp−n2 , xn−11 xp−n+1
2 }

if n is odd, and

{1, x2, x1, x1x2, . . . , xl−21 x2, x
l−1
1 , xl−11 x2,

xn−l1 xp−n2 , xn−l1 xp−n+1
2 , xn−l+1

1 xp−n2 . . . , xn−21 xp−n+1
2 , xn−11 xp−n2 , xn−11 xp−n+1

2 }
if n is even.

In either case, we note that none of the claimed generators have lead term di-
visible by x3, that each has x1-degree < p, that there are at most two elements
in Sn with the same x1-degree, and that when this happens these elements have
x2-degrees differing by 1. Combined with Lemma 13, we see that for every possible
choice of f ∈ A and g ∈ Sn, the lead monomial of fg is different. Therefore there
cannot be any A-linear relations between the elements of Sn. �

Remark 18. A generating set for Kp−1 over a different system of parameters can
be found in [5].
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Corollary 19. Let n ≤ p. Then k[V,W ]G is a Cohen-Macaulay module, generated
over A by

{Θ(M0),Θ(M1), . . . ,Θ(Mn−1),Θ(P0),Θ(∆p−n(P1)), . . . ,Θ(∆p−n(Pn−1))}.

Proof. Follows from Theorem 17 and the proof of Proposition 4. �

7. Application to transfers

The transfer ideal TrG(k[V ]) is widely studied in invariant theory. In the notation

of this article, we have TrG(k[V ]) = IGp−1 = Ip−1. In this section, we use our work

on covariants to give minimal k[V ]G-generating sets of the the ideals IGn−1 for each

n = 1, 2, . . . , p when V = V2, and minimal A-generating sets of the the ideals IGn−1
for each n = 1, 2, . . . , p when V = V3. We retain the notation of sections 5 and 6.

Theorem 20. Let V = V2 and 1 ≤ n ≤ p. Then IGn−1 is a free k[V ]G-module,

generated by xn−12 .

Proof. The same argument as in Lemma 15 implies that ∆n−1(xn−11 ) = λxn−12 for
some nonzero constant λ, so xn−12 ∈ IGn−1. Using (9) we see that

H(IGn−1, t) =
tn−1

(1− t)(1− tn)
.

As this is the Hilbert series of the ideal xn−12 k[V ]G, the result follows. �

For V = V3 we need to do a bit more work. We define a set of invariants

Tn−1 = {∆n−1(Mn−1)} ∪ {∆p−1(Pi) : i odd or zero, i < n}.
Bearing in mind the weight of Mn−1 is n, and the weight of each Pi above is p, it’s
clear that Tn−1 ⊂ IGn−1. We claim that

Proposition 21. Tn−1 generates IGn−1 as an A-module.

Proof. Let h ∈ IGn−1. Then we can write h = ∆n−1(f) for some f ∈ k[V ]G with

weight n, and by Proposition 3 we have Θ(f) ∈ k[V, Vn]G. By Corollary 19 we can
find elements α0, α1, . . . , αn−1, β0, β1, . . . , βn−1 ∈ A such that

Θ(f) =

n−1∑
i=0

αiΘ(Mi) +

n−1∑
i=0

βiΘ(∆p−n(Pi)).

Equating coefficients of wn in the above we obtain

h =

n−1∑
i=0

αi∆
n−1(Mi) +

n−1∑
i=0

βi∆
p−1(Pi))

but since ∆n−1(Mi) = 0 for i < n− 1 and ∆p−1(Pi) = 0 when i is even and i > 0,
we get h ∈ ATn as desired. �

Tn−1 does not generate IGn−1 freely over A. To see this, note that if Tn−1 were
free over A, the resulting module would have Hilbert series

tl + tp−l + tp−l+1 + . . .+ tp

(1− t)(1− t2)(1− tp)
.

But using (9) to calculate the Hilbert series of IGn yields

(13) H(IGn−1, t) =
tl + tp−l

(1− t)(1− t2)(1− tp)
which is strictly smaller. We claim, however, that Tn is a minimal generating set.
The first step in our argument requires more knowledge of certain lead monomials:
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Lemma 22. Let j ≤ k with j + k < p. Then ∆k+j(xk1) can be expressed as

2−j(j + k)!

(
k
j

)
xk−j2 xj3 + µj,kx1x

k−j−2
2 xj+1

3 + smaller terms

for some constant µj,k ∈ k, where µj,k = 0 if j − k < 2. In particular, the lead

monomial of ∆k+j(xk1) is xk−j2 xj3.

Proof. For shorthand we write

λj,k = 2−j(j + k)!

(
k
j

)
.

We begin by showing, for all 0 < j ≤ k, that

(14) λj,k+1 = (j + k + 1)λj,k +

(
j + k + 1

2

)
λj−1,k.

The author wishes to thank Fedor Petrov for pointing out this fact. To prove it,
note that (

j + k + 1
2

)
λj−1,k + (j + k + 1)λj,k

=
(j + k + 1)(j + k)

2
2−j+1(j + k − 1)!

(
k

j − 1

)
+ (j + k + 1)2−j(j + k)!

(
k
j

)
= 2−j(j + k + 1)!

((
k

j − 1

)
+

(
k
j

))
= 2−j(j + k + 1)!

(
k + 1
j

)
= λj,k+1

as required.
The proof is by induction on j. First suppose j = 0. We must show that

(15) ∆k(xk1) = k!xk2 + µ0,kx1x
k−2
2 x3 + smaller terms.

We prove this by induction on k. The case k = 1 is clear (with µ0,1 = 0), so let
k ≥ 1. Then we have

∆k+1(xk+1
1 ) = ∆k+1(xk1 · x1)

=

k+1∑
i=0

(
k + 1
i

)
∆k+1−i(xk1)σi(∆i(x1))

= x1∆k+1(xk1) + (k + 1)(x2 + x3)∆k(xk1) +

(
k + 1

2

)
x3∆k−1(xk1).

Now by Lemma 15 we have

∆k−1(xk1) = k!x1x
k−1
2 + f

for some f ∈ k[V ] with lead monomial ≤ xk2 . By induction we have

∆k(xk1) = k!xk2 + µ0,kx1x
k−2
2 x3 + smaller terms

and
∆k+1xk1 = k!∆(xk2) + µ0,kx3∆(x1x

k−2
2 ) + smaller terms.

= k!x3(xk−12 +xk−22 σ(x2)+. . .+σ(x2)k−1)+µ0,kx3(x2σ(xk−22 )+x1∆(xk−2))+ smaller terms

= (k.k! + µ0,k)xk−12 x3 + smaller terms.

So, ignoring terms smaller than x1x
k−1
2 x3 we have
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∆k+1(xk+1
1 ) = (k.k! + µ0,k)x1x

k−1
2 x3 + (k + 1)!xk+1

2 + (k + 1)µ0,kx1x
k−1
2 x3 + k!

(
k + 1

2

)
x1x

k−1
2 x3

= (k + 1)!xk+1
2 + (k!(k +

(
k + 1

2

)
) + (k + 2)µ0,k)x1x

k−1
2 x3

from which the claim (15) follows.
Now suppose j > 0. We proceed by induction on k. The initial case is k = j, so

we must first show that

∆2k(xk1) = 2−k(2k)!xk3 .

We prove this by induction on k. The result is clear when k = 1. Suppose that
k ≥ 1, then we have by (2)

∆2k+2(xk+1
1 ) = x1∆2k+2(xk1)+(2k+2)(x2+x3)∆2k+1(xk1)+

(2k + 2)(2k + 1)

2
x3∆2k(xk1).

But by Lemma 5, the weight of xk1 is 2k + 1, so the first two terms vanish. By
induction we are left with

∆2k+2(xk+1
1 ) =

(2k + 2)(2k + 1)

2
x3

(2k)!

2k
xk3 =

(2k + 2)!

2k+1
xk+1
3

as required.
Now suppose k ≥ j, then we have

∆j+k+1(xk+1
1 ) = ∆j+k+1(xk1 · x1)

=

j+k+1∑
i=0

(
j + k + 1

i

)
∆j+k+1−i(xk1)σi(∆i(x1))

= x1∆j+k+1(xk1) + (j + k + 1)(x2 + x3)∆j+k(xk1) +

(
j + k + 1

2

)
x3∆j−1+k(xk1).

Now by induction on k we have we have

∆j+k(xk1) = λj,kx
k−j
2 xj3 + µj,kx1x

k−j−2
2 xj+1

3 + smaller terms.

So

∆j+k+1(xk1) = λj,kx
j
3∆(xk−j2 ) + µj,kx

j+1
3 ∆(x1x

k−j−2
2 ) + smaller terms

= λj,kx
j
3(x3)(xk−j−12 + xk−j−22 σ(x2) + . . .+ σ(x2)k−j−1)

+ µj,kx
j+1
3 (x2σ(xk−j−22 ) + x1∆(xk−j−22 )) + smaller terms

= (λj,k(k − j) + µj,k)xj+1
3 xk−j−22 + smaller terms.

Also by induction on j we have

∆j−1+k(xk1) = λj−1,kx
k−j+1
2 xj−13 + µj−1,kx1x

k−j−1
2 xj3 + smaller terms.
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So, ignoring terms smaller than x1x
k−j−1
2 xj+1

3 we have

∆j+k+1(xk+1
1 ) = (λj,k(k − j) + µj,k)x1x

j+1
3 xk−j−22

+ (j + k + 1)(λj,kx
k+1−j
2 xj3 + µj,kx1x

k−j−1
2 xj+1

3 )

+

(
j + k + 1

2

)
(λj−1,kx

k−j+1
2 xj3 + µj−1,kx1x

k−j−1
2 xj+1

3 )

=

(
(j + k + 1)λj,k +

(
j + k + 1

2

)
λj−1,k

)
xk+1−j
2 xj3

+(λj,k(k − j) + (j + k + 2)µj,k +

(
j + k + 1

2

)
µj−1,k)x1x

k−j−1
2 xj+1

3

= λj,k+1x
k+1−j
2 xj3+

(λj,k(k − j) + (j + k + 2)µj,k +

(
j + k + 1

2

)
µj−1,k)x1x

k−j−1
2 xj+1

3

where we used the observation at the beginning of the proof in the final step.
This completes the proof of the formula for ∆j+k(xk1). Finally, note that λj,k 6= 0

modulo p if j + k < p. �

We can use this result, along with Lemma 16 to determine the lead monomial of
each element of Tn−1: we have

• LM(∆n−1Mn−1) = xl3;
• LM(∆p−1(P0)) = xp2;

• LM(∆p−1(Pi)) = xp−i2 x
(i−1)/2
3 when i is odd.

In particular for each i < n odd or i = 0 we have that

∆p−1(Pi) 6∈ A(∆n−1(Mn−1),∆p−1(Pj) : j > i, j odd),

which is the the ideal generated by the elements of Tn−1 with degree smaller than
the degree of ∆p−1(Pi), since each of these had lead monomial divisible by a larger
power of x3 than (i − 1)/2. This shows that Tn−1 is indeed a minimal generating
set.
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