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Mathematical modelling plays an increasingly important role in understanding the spread of 
disease. We have seen mathematicians respond with remarkable alacrity to the COVID-19 crisis 
releasing models which attempt to explain and predict the frightening numbers we see growing on 
our screens each day. Some of these models have already generated significant debate, criticism and
even controversy. Models can potentially have an impact on public discourse, for example by 
suggesting the extent to which measures like lockdowns, or contact tracing and quarantining, are 
likely to be successful at slowing the spread of the disease. Not all of the models will stand the test 
of time as we gain better understanding of the disease. This note attempts to provide a rough idea 
for the non-mathematician of what people modelling epidemics do, and why, in the case of COVID-
19, conclusions based on modelling need to be treated with caution. 

I myself am a mathematician with an interest in disease modelling – but am not an epidemiologist 
or a public health expert.

Methodologies

How does one build a mathematical model of the spread of a communicable disease, namely a 
disease which can be transmitted from person to person either directly or indirectly? Well, we start 
with individuals who may be in different states, for example, susceptible to infection, infected but 
not infectious, infected and infectious, immune from infection, and perhaps more. These individuals
can interact with each other either directly, or via other organisms or shared objects termed 
“vectors” of the disease, and in so doing the individuals may change state. We’ll call interactions of 
the kind which might transmit the disease “contacts”. Sometimes contact is indirect - in the case of 
malaria, a mosquito (the vector) may bite an infected person and then a susceptible person, and thus
transmit the malaria parasite to the susceptible person causing them to become infected. In the case 
of COVID-19, the vector might be a shared table sneezed on by an infected person, and then 
touched by a susceptible person – we’ll still think of this as the infected and susceptible person 
interacting via this table. Aside from interactions which may spread disease, we are interested in 
processes such as recovery, vaccination, or death, namely processes through which individuals 
change state or are removed from the picture without necessarily interacting with others. For 
example, a susceptible person who is vaccinated becomes an immune person, as does an infected 
person who recovers, assuming that recovery is accompanied by immunity.  

Although conceptually we start by thinking about individuals, in many modelling approaches, 
individuals are not the basic units. Most models will ultimately run on computers, and having 
individuals as the units causes an explosion in model size and computing power needed. It may also
be difficult to find the kind of data needed to construct the model, and hard to draw general 
conclusions from the model. To reduce this complexity, individuals in each category are often 
grouped into populations. Thus we might have a susceptible population, an infected population, a 
recovered population, etc. In this way of thinking, when a susceptible person becomes infected, they
“move” from the susceptible population into the infected population; if an infected person recovers 
and becomes immune to the disease, they move from the infected to the immune population; and so 
forth. If an individual in some population dies, the size of that population decreases.

Underlying all epidemic models are the likelihoods of various occurrences, most importantly those 
which lead to disease transmission. Public health debates often focus on what can happen without 



quantifying the risks of it actually occurring – for example many people may fear getting unwell by 
touching a lift button, without considering if it is likely. But to build reasonable models, modellers 
need access to probabilities, not just possibilities. When the units in the model are individuals rather
than populations it is natural for probabilities to enter explicitly: each time a susceptible and an 
infected individual meet we may, roughly speaking, toss a (biased) coin to decide if disease 
transmission occurs. In population models though we often hide away the probabilities in “rates” of 
transmission. Typically, the rate at which people become infected will be a function of the total 
number of infected people and the total number of susceptible people. Often modellers will try to 
infer these rates from real-world data on the disease without worrying too much about the exact 
mechanisms behind them.

Once we’ve set up a model we “run” or “simulate” it. This generally involves “solving” equations 
approximately or exactly, more often than not with the aid of a computer, and then trying to get 
some useful information from the solutions. This might be a prediction of what happens next in 
different scenarios, or an explanation of some surprising data that we have observed. We might also 
want to use the model to help predict the effects of interventions such as social distancing, greater 
hygiene, contact tracing and quarantining, or lockdowns on the spread of disease. Model predictions
can be compared to data which wasn’t used in constructing the model to give a sense of how well 
the model is performing.

With these generalities in mind, let’s come to why we need to be cautious when it comes to models 
of COVID-19 at this moment in time. In my view, this disease presents a modeller with exceptional 
challenges for many reasons. 

Ignorance

The first problem is ignorance. There seems to be so much that we don’t really know about 
COVID-19. Take the most basic question of fatality rates. There is huge variation between 
countries’ so called “case fatality rates”, namely the death rates amongst individuals who are 
confirmed to have the disease. Explanations for these variations are speculative and often 
unconvincing. Data collection and recording is of variable quality and the numbers need to be 
treated with extreme caution. Also varying widely are estimates of a more important number than 
the case fatality rate, namely the “infection fatality rate”. This is the proportion of infected 
individuals, including those not picked up through testing, who will eventually die – the true fatality
rate if you like. Since most infections are not picked up this number has to be estimated, and data 
scientists have come up with a variety of plausible values for COVID-19. But the spread in these 
estimates is large. And some have speculated that the actual value of this number varies 
considerably between different populations.

Apart from fatality rates, we don’t yet know how most transmissions occur. We know that the 
disease can be transmitted in airborne droplets, and that the virus can remain viable for various 
lengths of time on different surfaces. There is some evidence that poorly ventilated indoor spaces 
are often a site of transmission. Without better understanding of transmission, it is hard to know 
what counts as “contact” between individuals – does singing in a choir next to an infected 
individual pose an infection risk? Can receiving money from an infected individual spread the 
disease? To what extent can asymptomatic or presymptomatic individuals transmit the disease? 
There is evidence that they can do so, but we don’t know how significant such transmission routes 
are overall. The list of what we don’t know goes on. There is not yet clarity on whether viral load or
initial viral dose correlates with worse outcomes, whether recovered individuals can be reinfected, 
or what is the greatest length of time that someone can remain infected and infectious. As better 
data becomes available, some of these questions will be answered, but at this stage there is a lot of 
guesswork. 



Variability

Distinct from ignorance, a second difficulty for a modeller is variability. There are very real 
differences in the way the disease behaves in different individuals and environments. Focussing on 
individuals first, the time course and severity of the disease seems to differ immensely from 
individual to individual. At one end of this spectrum we have people unaware they have the disease,
while at the other people die. COVID-19 seems to be heavily age-biased, but we don’t yet 
understand why, and whether age is truly the variable of importance or there are other variables 
which correlate with age and lead to older people being worse affected on average. Although 
fatality rates clearly rise with age and comorbid conditions, it is possible that they vary with a whole
host of other factors as yet unidentified.

One approach to variability is to try to understand it and incorporate it into models. If we are being 
very ambitious, apart from focussing on transmission of disease, we may also try to understand the 
interplay between human physiology and viral dynamics to find out how the disease plays out 
inside us. A good understanding of this will help explain why individuals respond so differently to 
infection. In the case of COVID-19 it is early days and there is a great deal of clinical and 
laboratory study which needs to happen before our understanding is sufficient to model this 
interplay – such work takes time. There are no quick fixes here.

Aside from biology, environments too vary immensely. Epidemics occur in a context – the physical 
environment couples with social, cultural and political factors to affect the way that they spread 
through populations. How tactile we are, notions of personal space, notions of hygiene, and so forth,
are heavily dependent on culture and personality, and may correlate with gender and age. Contact 
structures between people show great variation which is necessarily simplified or sidestepped in 
models. Factors such as population density, public sanitation, and the existence of shared spaces can
also vary dramatically between localities, altering indirect structures of contact and affecting the 
disease spread. There may be subtle complications affecting the disease dynamics – for example the
nature of contact within groups more likely to be asymptomatic, such as children, may be very 
different from contact between groups more likely to be symptomatic, such as the elderly.

Not every kind of variability necessarily matters when building models, but variability can’t just be 
brushed under the carpet – it can be important in itself. You may have heard that each COVID-19 
sufferer on average infects two or more others in an uncontrolled situation. This number can be 
estimated from data on infections of the kind that most governments are releasing at the moment 
and actually seems to vary significantly from country to country. It is termed the basic reproduction 
number – or R0 (read “R nought”) – of the infection and is very definitely not an innate feature of 
the disease. Rather, it arises from the disease, human behaviours, and the environment acting in 
concert. This is good news – if it were an absolute unchanging quantity then we could never 
effectively fight disease since most attempts to do so can be seen, basically, as attempts to lower this
number to below 1.

Anyway, although R0 may get quoted a lot, it is a crude average figure, and its variation may be as 
important as the number itself. There is evidence that some coronavirus-infected individuals, 
because of their behaviours and perhaps their biology, do not cause many further infections, while 
others cause a large number of infections. If we ascribed R0 values to individuals, we would see a 
wide spread in these values. To see why this variability is important for the disease dynamics and 
control strategies consider the following hypothetical scenario where most individuals are low 
transmitters (let’s call them “recluses”), while a few are very high transmitters (let’s call them 
“socialites”). If a recluse is infected initially, it is quite likely that the infection will not cause an 



outbreak. But the opposite is true if a socialite is infected. On average the disease will need to be 
introduced into a population several times to cause an outbreak. And even when the disease is 
widespread, measures such as education, contact tracing and quarantining could be quite successful 
in slowing its progress, as long as they are thorough enough to reach most of the socialites. If, on 
the other hand, there was no variability in R0, then assuming this value is greater than one any 
introduction of the disease into a population will generally cause an outbreak. And control measures
which miss a few infected individuals are likely to be followed by new outbreaks. Population 
models generally cannot include variability in R0 values, and thus risk missing such effects – 
individual-based models can however take this variability into account. 

Conclusions

So what can we conclude about the usefulness of attempts to model COVID-19 so far? Our lack of 
knowledge, plus the well-documented variability between individuals and contexts presents a huge 
hurdle to model-building. Any model will be forced to dramatically simplify reality and its 
conclusions will become suspect. Once we have somehow built a model we may take an empiricist 
position and focus on evaluating it by comparing its predictions with data. However, it is fair to say 
that the quality of data on COVID-19 is poor. Testing levels and data collection methodologies vary 
widely from country to country and transparency may be limited. Thus model testing also presents 
difficulties. 

Bearing in mind ignorance, variability and the poor quality of much available data, our main 
conclusion is that we need to be cautious in using models to inform public health decisions about 
COVID-19. All the models constructed so far and in the foreseeable future will be based on 
assumptions which, if unpacked, many an epidemiologist or public health expert would question. 
Nevertheless, modelling at this stage is not useless. Rather than relying on quantitative predictions 
of models, we should focus on their explanatory power, power to stimulate debate, and the 
qualitative insights they give us. They may suggest hypotheses, or provide new testable theories 
about what is happening underneath the surface of available data. The biggest positive to come from
some of the models that have made it into the public sphere is that they have sparked important 
debates about numbers, data, interventions. Some very basic models have served to educate about 
measures such as social distancing. Given the severe economic and human consequences of some 
mitigation and containment strategies like lockdowns, it cannot harm to ask models to contribute to 
the discussion on how likely they are to be successful, and to help evaluate alternative strategies. 
Models may also be able to highlight just how serious problems like inadequate hygiene in hospitals
or a lack of protective gear for medical and support staff in hospitals could prove to be. 


